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Outline:

• Quantum-limited sensitivity of imaging

• Parametric image amplification

• Spatial bandwidth of parametric amplification

• Quantum-noise correlations in image amplification

• Noiseless image amplification

• Potential for applications
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Applications of Quantum OPAs:
Quantum-Limited Sensitivity of Imaging
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• M. I. Kolobov and P. Kumar, “Sub-shot–noise microscopy: Imaging of faint phase 
objects with squeezed light,” Opt. Lett. 18, 849 (1993).

• P. Kumar and M. I. Kolobov, “Four-Wave Mixing as a Source for spatially 
broadband squeezed light,” Opt. Commun. 104, 374 (1994).
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Amplification & Imaging

Noiseless amplification:
parametric downconversion            amplified amplitude

• coherent light                                                  light with   
phase-sensitive amplifier (PSA)                        squeezed phase

• noise performance of PSA is better than quantum limit of 
phase-insensitive amplifier (PIA)  (Kimble, 1993; Levenson, 1993)

Parametric imaging:
• parametric up-conversion of infrared images 
(Midwinter, 1968; Firester, 1969; Andrews, 1970)

• parametric amplification of images (Fainman, 1986; Laferriere, 1989; Devaux, 1995)

• Utilize phase-sensitive optical parametric amplifier (OPA) to improve imaging 
better amplifier noise figure (NF)                better detection sensitivity

Motivation:

• Enhancement of time-gated image recovery
(Faris, 1994; Brun, 1995; Cameron, 1996; Lantz, 1997)

• Enhancement of faint images

Potential applications:
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Spatially Broadband OPA
& Phase Matching
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Setup for Parametric Image Amplification
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Parametrically Amplified Images
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Spatially Broadband OPA Theory

Parametric gain:  phase-insensitive gain   
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Spatially-Broadband OPA:
Spatial Spectra of Gain and Noise Reduction
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Twin-Beam Noise Reduction vs. OPA Gain

M. L. Marable, S-K. Choi, and P. Kumar, Optics Express 2, 84–92 (1998).
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Twin-Beam Noise Reduction vs. ∆∆∆∆k 
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M. L. Marable, S-K. Choi, and P. Kumar, Optics Express 2, 84–92 (1998).
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Amplification of Coherent Light Input
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Measurement of Spatial Bandwidth of OPA

•Layout for noncollinear twin beam noise reduction measurement
•Spatial bandwidth found by measuring Gq of signal at fixed G0
for objects of various resolution
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Measurement of Spatial Bandwidth of OPA 
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• Gain at various spatial frequencies 
with fixed gain for 0th component

• G0 = 2  in  5 mm KTP crystal  

• Spatial transfer function, that is, 
amplified signal vs. spatial frequency

• G0 = 2  in  5 mm KTP crystal  
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Layout for Noiseless Image Amplification
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S.-K. Choi, M. Vasilyev, and P. Kumar, Phys. Rev. Lett. 83, 1938 –1941 (1999).
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• 2-slit object magnified x24 and then compressed in one dimension
• Spatial profiles scanned by photodetector in horizontal direction
• Red squares – bare profile; Blue squares – PSA profile
• 3.25 mm KTP crystal
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Amplifier Noise Figure
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Conclusions

Quantum Noise Correlations In Image Amplification

Noiseless Image Amplification

• Spatially broadband noiseless image amplification
PSA gain    2.5  and NFamp 0 dB at peaks of amplified 2-slit image

• Improvement of detected SNR due to pre-amplification before loss
NFamp+loss 0.2-0.4 dB  <  NFbare+loss 0.9 dB 

≅ ≅

≅ ≅

• Observation of quantum noise reduction in non-collinear twin beams
5 dB below the shot-noise level

• Good agreement with theory of spatially-broadband OPA

• Bandpass OPA selects spatial frequency for amplification


